AI: Deeper Learning with Intel® Omni-Path Architecture

September 18, 2017

Deep learning is a powerful tool that identifies patterns, extracts meaning from large, diverse datasets, and solves complex problems.  However, integrating neural networks into existing compute environments is a challenge that often requires specialized and costly infrastructure.

New software and hardware options will simplify the complexity.

  • Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.
    Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.

    Intel® Omni-Path Architecture (Intel® OPA) is well suited to the demands of deep learning, enabling near-linear scalability across large numbers of nodes to provide fast time to results for large problems (see Figure 1).

  • Intel® Xeon® Scalable processors provide up to 2.2X higher neural network training performance than previous-generation Intel Xeon processors.[i]
  • Intel® Xeon Phi™ processors provide extreme parallelism, and deliver up to a teraflop or more of performance for neural network training, without the inherent latencies of GPUs or other PCIe-connected devices.
  • Intel optimized tools, libraries, and frameworks for deep learning provide better performance on Intel architecture than non-optimized software.

A key focus of deep learning implementations is to reduce the time to train the model and to ensure a high level of accuracy. HPC clusters provide a scalable foundation for addressing this need.[ii] However, due to workload characteristics and the compute capabilities of Intel Xeon processors, a high speed, low latency network fabric interconnect is needed to reduce the chance of a performance bottleneck. The fabric must allow all nodes to communicate quickly and effectively, so the servers don’t waste valuable compute cycles waiting to send and receive information.

As part of Intel® Scalable System Framework (Intel® SSF), Intel OPA is designed to tackle the compute- and data-intensive workloads of deep learning and other HPC applications. This high-speed fabric is developed in tandem with Intel compute and storage technologies. The resulting integration helps to resolve many of the performance and cost challenges associated with traditional HPC fabrics.

A Fabric for the Future of AI—and Other HPC Workloads

Deep learning frameworks differ, but the general workflow is the same as it is for many other HPC applications: work the calculation, iterate, then blast out the results to adjacent workloads. During the data sharing stage, a high volume of very small, latency-sensitive messages is broadcast across the fabric.

Breaking Down Barriers in AI

As the interconnect for the Pittsburgh Supercomputing Center’s supercomputer, known as Bridges, Intel® Omni-Path Architecture (Intel® OPA) is already helping to push the boundaries of AI. Bridges compute resources were used to train and run Libratus, an AI application that beat four of the world’s top poker players in a no-limit, Texas Hold ‘em tournament.

The performance and scale of Bridges enabled Libratus to refine its strategy each night based on the previous day’s play. One player said it felt like he was “playing against someone who could see his cards.”

The victory was about more than bragging rights. Libratus is applicable to other two-player zero-sum games, such as cyber-security, adversarial negotiations, and military planning, so beating humans has profound implications.

Read more about the Bridges supercomputer and Intel OPA.

Intel OPA transmits this traffic with the same 100 Gbps line speed as other high-speed fabrics, but this tells only part of the story. It also includes optimizations that address common bottlenecks.

  • Low-Latency, Even at Extreme Scale. Intel OPA provides traffic shaping and quality of service features to improve data flow and prioritize MPI traffic. These advantages help to reduce latency by up to 11 percent versus EDR InfiniBand, with up to 64 percent higher messaging rates.[i]
  • Better Price Performance. Intel OPA is based on a 48-port chip architecture (versus 36-port for InfiniBand). This reduces the number of switches, cables, and switch hops in medium to large clusters, which provides both cost and performance advantages.
  • Improved Accuracy and Resilience. Unlike InfiniBand, Intel OPA implements no-latency error checking, which improves data accuracy without slowing performance. It also stays up and running in the event of a physical link failure, so applications can run to completion, a crucial advantage for lengthy training runs.

Tight Integration Throughout the Stack

Tight integration among Intel OPA and the other components defined by Intel SSF provides additional value. For example, Intel Xeon Scalable processors and Intel Xeon Phi processors are available with integrated Intel OPA controllers to reduce the cost associated with separate fabric cards.

Intel also developed and tested Intel OPA in combination with our full HPC software stack, including Intel® HPC Orchestrator, Intel® MPI, the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN), and the Intel® Machine Learning Scaling Library (Intel® MLSL). This integration helps to improve performance and reliability. It also reduces the complexity of designing, deploying, and managing an HPC cluster.

Figure 2. The Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

A Faster Road to Pervasive Intelligence

Learn more about Intel SSF benefits for AI and other HPC workloads at each level of the solution stack: compute, memory, storage, fabric, and software.AI is still in its infancy. Tomorrow’s neural networks will dwarf those of today. The mission of Intel OPA and the full Intel SSF solution stack is to make the computing foundation for this growth as simple, scalable and affordable as possible, not only for AI, but for all HPC workloads. This will help to ensure that front-line innovators have the tools they need to support their core mission—transforming the world through deep, pervasive intelligence.

[1] For details, see https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html

[2] Not all deep learning frameworks are optimized to run efficiently on HPC clusters. Intel is working with the vendor and open source communities to resolve this issue and to lay the foundation for increasingly large neural networks acting on petabyte-scale datasets.

[3] For details, see https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet the Roadrunners

May 4, 2024

This is the other team from the University of New Mexico. I mistakenly thought that one of their team members was going to make history by being the first competitor to compete for two different schools – but I was wro Read more…

2024 Winter Classic: Meet Channel Islands “A”

May 3, 2024

This is the second team from California State University, Channel Islands – or maybe it’s the first team? Not sure, but I do know they have two teams total, and this is one of them. As you’ll see in the video in Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

2024 Winter Classic: Meet Team Jackson State

May 3, 2024

This is the second time we’re seeing a team from Jackson State university. The team features two veterans of the 2023 Winter Classic, which should help, but it’s also a team whose members are involved in a lot of oth Read more…

2024 Winter Classic: NASA Results Revealed!

May 2, 2024

In this edition of the Winter Classic Studio Update Show we reveal the results from the NASA BTIO Challenge. The benchmark, BTIO, is a subset of the NAS Parallel benchmark and NASA set up a formidable set of milestones, Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire