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1. Introduction
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» Our Latent Diffusion Model for 3D (LDM3D) generates RGB image and depth map pairs for given text ke R world, s W J y
prompts, allowing users to generate RGBD outputs from text inputs. P & . e e v B8 | g é

» \We demonstrate integration of LDM3D into an application called DepthFusion, which uses diffused
images and depth maps to create immersive and interactive 360°-view experiences with TouchDesigner.

2. Methodology 3. Evaluation

= 6-channel RGBD input: 16b grayscale depth is packed into 3-chn 8b depth, concatenated with the RGB image We evaluate text-conditional image synthesis on 30k samples of the MS-COCO validation dataset.
" Input is passed through modified KL-encoder and mapped to the latent space L DM3D Image Analysis Metrics
" Noise is added to the latent representation, which is then iteratively denoised by the U-Net SDv14 RGB Depth DPT-L  ZoeD-NK Method FID| 1S1 CLIP?}
= Text prompt is passed through a frozen CLIP-text encoder and mapped to U-Net layers via cross-attention * - =Dvla 808 SAl7xBro 2015228
. o e . acloseupofa  EUIRRe S '
* Denoised latent representation is passed through modified KL-decoder and mapped back to pixel space sheet of pizzaona (giIET Sk | SD V1S 2739 3402+079 2613+279
as a 6-channel RGBD output. This is then separated into an RGB image and a 16b grayscale depth map table B AR LDM3D (ours) 27.82 2879:049  26.61+2.92
= | DM3D was trained on Intel Al Supercomputing Cluster with Intel Xeon and Habana Gaudi Al accelerators
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LDM3D (ours) 0109  151[m] maximum

RMSE deviation of LDM3D w.r.t. DPT-L across 30k samples
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Our model is on par with Stable Diffusion with nearly the same number of parameters (1.06B). We finetune on a oo
subset of ~I0k samples from LAION-400M. Depth labels for supervised training are produced using DPT-Large. some rocks

For ~50% of test samples, LDM3D achieves
depth error within +20% of DPT-Large.

4. Application: Depthlusion

Viewpoint shows depth proximity.

Frame assembly into movie file output.

LDM3D is integrated into DepthFusion:
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. Image-to-image inference with LDM3D:
with Mesh at Origin (0,0,0)

an RGBD input consisting of a
panoramic image and depth map is
passed through LDM3D to generate a
new transformed image and depth map,

LDM3D 24b colorimage
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gUided by a given text prompt. LDMS3D 16b depth map Vertex Manipulation Mesh Refinement
2. Generated images are projected onto a | _ﬁ;' | .. ;
sphere and manipulated based on e \
diffused depth, followed by meshing. NS
3. Different viewpoints are assembled. Camra Movement Video Assembly
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