intelai Sumit 英特爾 AI 科技論壇 Bringing Al Everywhere

oneAPI and Intel AI Products: Optimizing Deep Learning Performance on Intel Hardware Platforms

Jing Xu 人工智能軟體科技顧問 March 27th, 2024

Overview

Bring AI Everywhere

Bringing AI Everywhere

Bringing AI Everywhere

Intel[®] Gaudi[®] 2 Al Accelerator

<u>e</u>			Proven Performance	 The ONLY alternative to H100 for training LLMs based on MLPerf Trained GPT-3* model in 311 minutes on 384 Intel Gaud2 accelerators
			Price Performance	 Intel Gaudi2 accelerators with FP8 estimated to deliver price-performance >H100 ~2x price-performance to A100
7nm Process Technology	24 Tensor Processor Cores	96 GB On-Board HBM2	Scalability	 95% linear scaling on MLPerf GPT-3 training benchmark Access large Intel Gaudi2 cluster on the Intel Developer Cloud
	48 MB sram	24 Integrated Ethernet ports	Ease of Use	 Software optimized for deep learning training and inference PyTorch, Hugging Face, Optimum Library optimizations

Performance metrics based on MLPerf Training 3.0 benchmark. For configuration details, see the results <u>published by MLPCommons</u>. GPT-3 model tested on MLPerf Training 3.0 consisted of representative 1% slice of the entire GPT-3 model Performance expectations for Gaudi2 with FP8 based on Intel internal evaluation June 2023 Price-performance claim based on comparable pricing of Intel Gaudi server and Nvidia A100 server and <u>MLPerf Inference 3.1 Results</u>. , Aug 2023. See Supermicro for server pricing. Price-performance claim based on significant pricing differential between Intel Gaudi2 and Nvidia H100 server, <u>MLPerf Training 3.0 Results</u>, May 2023 and internal estimates of performance advancement with FP8. See Supermicro for server pricing. Results may vary

Seamless Code Transitioning

Performant AI Code with Minimal Changes

⁽) PyTorch

deepspeed

•••

Fine Tuning

Intel Provides Solution Options for Fine-tuning Gen Al and LLMs to Fit Workload Needs

4th Generation Intel[®] Xeon[®] Scalable Processor

3-10x speedup and 7.7x performance/watt¹

for INT8/ BF16 models with Built-In AI Acceleration

4th Gen Intel[®] Xeon[®] Scalable Processor with Intel[®] Advanced Matrix Extensions acceleration vs. 3rd Gen Intel[®] Xeon[®] Scalable Processors

Intel[®] AI software

300+ DL Models 50+ optimize ML and Graph Models Optimizations up-streamed Intel[®] AI Developer Tools

2x PCI Express 5.0 Bandwidth

Compared to 3rd Gen Intel[®] Xeon[®] Scalable Processors

OneAPI AI Ecosystem

Use any popular DL, ML, and Data processing library and framework, operating system, and virtual machine manager

1.5x DDR5 Memory Bandwidth and Capacity

Compared to 3rd Gen Intel[®] Xeon[®] Scalable Processors Up to 512 GB/Socket Protected Memory Enclave—Intel[®] Security Guard Extensions

Confidential AI supported in BigDL and OpenVINO[™] toolkit

Intel[®] Advanced Matrix Extensions (Intel[®] AMX)

Acceleration Engine

What is Intel[®] AMX?

- Intel[®] AMX is a built-in accelerator that improves the performance of deep learning training and inference on 4th Gen Intel[®] Xeon[®] processors
- Advanced matrix multipliers are integrated into EVERY core

Business Value

 Help to lower customers' TCO as it raises the bar for where they can meet AI SLAs without the need for a discrete accelerator

Software Support

- Works out-of-box on industry-standard frameworks, toolkits and libraries such as PyTorch, TensorFlow, and OpenVINO
- vSphere 8 supports Intel AMX

PyTorch Training and Inference Up to **10X** higher

PyTorch for both real-time inference and training performance with builtin Intel AMX (BF16) vs. the prior generation (FP32)

Visit <u>here</u> for workloads and configurations. Results may vary.

Hugging Face Evaluations Substantiate Intel[®] Gaudi[®] 2 Accelerator LLM Performance vs. Nvidia A100 and H100

Fine-tuning Across Numerous LLMs 2.4x 2.5x VIDIA T5 - 3B Samples/s Bridge Tower NVIDIA H100

1.4x

Bridge

Tower

intel[°]Ai summit

Visit <u>https://habana.ai/habana-claims-validation</u> for workloads and configurations. Results may vary.

BS = 16

https://huggingface.co/blog/habana-gaudi-2-benchmark

https://huggingface.co/blog/bridgetower

Out-of-the Box Intel® Xeon® Fine Tuning

Optimized Models & Spaces							
Dolly	LLAMA2	МРТ	LDM3D	Whisper	100k's Mode		

Fine Tuning Open-source Commercial Large Foundational Models In Minutes To Hours

BioGPT 1.5 Billion Parameter and GPT-J 6 Billion Parameter Model

Inference

Energy Efficiency

Throughput-per-Watt on BLOOMZ 176B Inference is 1.79x

better than H100; 1.61x better than A100

Inference Advantage Across Multiple LLM Performance Metrics

<u>https://huggingface.co/blog/habana-gaudi-2-benchmark</u> <u>https://huggingface.co/blog/habana-gaudi-2-bloom</u> Visit <u>https://habana.ai/habana-claims-validation/</u>for workloads and configuration regarding power consumption claims. Results may vary. intel GAUDI

Intel[®] Gaudi[®] 2 Al Accelerator: Solving LLM Challenges

Inference on GPT-J

Intel Gaudi 2 Accelerator with FP8

- Near-parity* on GPT-J with H100
- Outperformed A100 by 2.4x (Server) and 2x (Offline)
- Achieved 99.9% accuracy with FP8

GPT-J On MLPerf Inference Benchmark

Source: MLPerf Inference 3.1 Data Center Benchmark Results: https://mlcommons.org/en/inference-datacenter-31/ Intel® Gaudi® 2 AI accelerator on GPT-J Vs H100 with 1.09x (Server) and 1.28 (Offline). Results may vary

LLaMA2 (7B) Inference with 4th Gen Intel[®] Xeon[®] Processors

- Use any popular industry standard AI libraries
- Intel AI Platform validated with over 300 inference models

LLaMA2 7B : Intel Xeon 4th Gen 8480 <u>1S</u> P90 Latency Batch Size 1, Beam Width 4, PyTorch* + Intel[®] Extension for PyTorch* (Lower is better)

Visit <u>here</u> for workloads and configurations. Results may vary.

• One socket of 4th Gen Intel[®] Xeon[®] processors can run LLaMa2 chatbots in under 100ms 2nd token latency

On 1 Socket Intel[®] Xeon[®] Scalable Processor

Inference Across Multiple Products LLaMA2 7B & 13B Inference

Llama 2 Next Token Latency (Lower is Better)

On 1 Tile (out of 2 tiles per card) Intel® Data

Center GPU Max 1550

Greedy Mode, Mixed Precision (bfloat16), BS = 1, 256 Output Tokens

Intel[®] Gaudi2 [®]Al Accelerator

Intel® Data Center GPU Max 1550 single tile (1 card has 2 tiles)

Intel Data Center GPU Max 1550

Intel Xeon Scalable Processor

For configuration details see: https://habana.ai/habana-claims-validation/ and www.intel.com/PerformanceIndex

Software Optimizations

Optimization Methodologies

Intel[®] oneAPI AI Analytics Toolkit

Accelerates end-to-end Machine Learning and Data Analytics pipelines with frameworks and libraries optimized for Intel[®] architectures

Who Uses It?

Data scientists, AI Researchers, Machine and Deep Learning developers, AI application developers

Intel[®] oneAPI AI Analytics Toolkit **Deep Learning** Machine learning Intel[®] Extension for Scikit-Intel[®] Optimization Learn* for TensorFlow* Intel[®] optimizations for XGBoost Intel[®] Optimization for PyTorch Model Zoo **Data Analytics** for Intel[®] Architecture Intel[®] Distribution of Modin* Intel[®] Neural Compressor **OmniSci Backend**

Learn More: Intel®.com/oneAPI-AIKit

Intel[®] Optimization for PyTorch*

Overview

Eager Mode (Default)

- Focus on operators
- For development and debugging
- Graph Mode (TorchScript)
 - Fuse operators and use constant folding to modify and merge the model structure to reduce time loss on invalid operations
 - For **deployment**
- oneDNN is available.
- AMX automatically enabled with oneDNN.
- Dynamically linked in CPP executables.

Intel[®] Extension for PyTorch*

CPU: <u>Code</u> and <u>Documentation</u> GPU: <u>Code</u> and <u>Documentation</u>

Major Optimization Methodologies

- General performance optimization and Intel new feature enabling in PyTorch upstream
- Additional performance boost and early adoption of aggressive optimizations through Intel[®] Extension for PyTorch*

Vectorization

ISA	Length	Num of FP32
AVX	128 bits	4
AVX2	256 bits	8
AVX512	512 bits	16

zmm2	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]
				+				
zmm3	b[0]	b[1]	b[2]	b[3]	b[4]	b[5]	b[6]	b[7]
=								
zmm1	a[0]+b[0]	a[1]+b[1]	a[2]+b[2]	a[3]+b[3]	a[4]+b[4]	a[5]+b[5]	a[6]+b[6]	a[7]+b[7]

https://www.Intel®.com/content/www/us/en/developer/articles/technical/improve-performance-with-vectorization.html

Parallelization

Memory Layout

- Used mainly in image workloads
- NCHW (PyTorch default)
 - torch.contiguous_format

• NHWC

- torch.channels_last
- NHWC format yields higher performance on Intel[®] hardware
- For GPU, move the input and model to "xpu" <u>before</u> converting to channels last
 - input = input.to("xpu")
 - model = model.to("xpu")

NB: internally blocked format will still be used.
<pre>## aka. we do 'reorder' for 'input', 'weight' and 'output',</pre>
and believe me this is expensive, roughly 50% perf loss
input = torch.randn(1, 10, 32, 32)
model = torch.nn.Conv2d(10, 20, 1, 1)
<pre>output = model(input)</pre>

input = torch.randn(1, 10, 32, 32)
model = torch.nn.Conv2d(10, 20, 1, 1)
NB: convert to Channels Last memory format.
oneDNN supports NHWC for feature maps (input, output),
but weight still needs to be of blocked format.
Still we can save reorders for feature maps.
input = input.to(memory_format=torch.channels_last)
model = model.to(memory_format=torch.channels_last)
output = model(input)

Low-precision Optimization – BF16

BF16 has the <u>same range</u> as FP32 but <u>less precision</u> due to 16 less mantissa bits. Running with 16 bits can give significant performance speedup.

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

Training w/AMX BF16 on CPU

<pre>import torch import torchvision import intel_extension_for_pytorch as ipex</pre>	<pre>model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train()</pre>
LR = 0.001	<pre>model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)</pre>
DOWNLOAD = True	
DATA = 'datasets/cifar10/'	<pre>for batch_idx, (data, target) in enumerate(train_loader):</pre>
	optimizer.zero grad()
transform = torchvision.transforms.Compose([with torch.cpu.amp.autocast():
torchvision.transforms.Resize((224, 224)),	output = model(data)
torchvision.transforms.ToTensor().	loss = criterion(output, target)
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))	loss_backward()
1)	optimizer step()
train dataset = torchwision datasets (TEAR10(optimizer.step()
root=DATA	tench sous((
topin-True	<pre>impdol state distly model state dist()</pre>
	<pre>model_state_dict : model.state_dict();</pre>
developed DOUNLOAD	<pre>'optimizer_state_dict': optimizer.state_dict(),</pre>
download=DOWNLOAD,	<pre>}, 'checkpoint.pth')</pre>
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,	
batch_size=128	
)	

Inference w/AMX BF16 on CPU

Resnet50

import torch
import torchvision.models as models

model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)

with torch.no_grad(), torch.cpu.amp.autocast(): model = torch.jit.trace(model, torch.rand(1, 3, 224, 224)) model = torch.jit.freeze(model)

model(data)

BERT

```
import torch
from transformers import BertModel
```

model = BertModel.from_pretrained("bert-base-uncased")
model.eval()

vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length])

with torch.no_grad(), torch.cpu.amp.autocast():

```
d = torch.randint(vocab_size, size=[batch_size, seq_length])
model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze(model)
```

model(data)

Training with Intel[®] Extension for PyTorch* (GPU)

```
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
```

batch size=128

```
transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((224, 224)),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
    root=DATA,
    train=True,
    transform=transform,
    download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
```

```
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
```

*The .to("xpu") is needed for GPU

model = model.to("xpu") criterion = criterion.to("xpu") model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16) for batch idx, (data, target) in enumerate(train loader): optimizer.zero grad() data = data.to("xpu") target = target.to("xpu") with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16): output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() print(batch idx) torch.save({ 'model state dict': model.state dict(), 'optimizer_state_dict': optimizer.state_dict(),

```
}, 'checkpoint.pth')
```


Inference with Intel[®] Extension for PyTorch* (GPU)

*The .to("xpu") is needed for GPU

Resnet50

import torch

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

BERT

import torch

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length])

```
with torch.no_grad():
```

model(data)

Low-precision Optimization – INT8

What is Quantization?

- An approximation method
- The process of mapping values from a large set (e.g., continuous, FP64/FP32) to those with smaller set (e.g., countable, BF16, INT8)

How to Quantize?

- PyTorch quantization
- https://pytorch.org/docs/stable/quantization.html

Why Quantization?

Significant performance increase with similar accuracy

Quantization Types

	Quantization Mod	e	Dataset Requirement	Works Best For	Accuracy	Notes
Post Training Quantization	Dynamic/Weight Only Quantization	activation dynamically quantized (fp16, int8) or not quantized, weight statically quantized (fp16, int8, in4)	None	LSTM, MLP, Embedding, Transformer	good	Easy to use, close to static quantization when performance is compute or memory bound due to weights
	Static Quantization	activation and weights statically quantized (int8)	calibration dataset	CNN	good	Provides best perf, may have big impact on accuracy, good for hardwares that only support int8 computation
	Dynamic Quantization	activation and weight are fake quantized	fine-tuning dataset	MLP, Embedding	best	Limited support for now
Quantization Aware Training	Static Quantization	activation and weight are fake quantized	fine-tuning dataset	CNN, MLP, Embedding	best	Typically used when static quantization leads to bad accuracy, and used to close the accuracy gap

https://pytorch.org/docs/stable/quantization.html

Operator Fusion

FP32 & BF16 Fusion Patterns

- Conv(2, 3)D + ReLU
- Conv(2, 3)D + SUM
- Conv(2, 3)D + SUM + ReLU
- Conv(2, 3)D + Sigmoid
- Conv(2, 3)D + Sigmoid + MUL
- Conv(2, 3)D + HardTanh

- Conv(2, 3)D + SiLU
- Conv(2, 3)D + ELU
- Linear + ReLU
- Linear + GELU
- •••

Constant Folding

Binary Folding (ADD/SUB/MUL/DIV)

 x_0

axon from a neuron

 w_0

💌 synapse

 $w_0 x_0$

TorchScript and TorchDynamo

TorchScript

- Converts PyTorch **model** into a graph for faster execution
- torch.jit.trace() traces and records all operations in the computational graph; requires a sample input
- torch.jit.script() parses the Python source code of the model and compiles the code into a graph; sample input not required

TorchDynamo – in BETA

 Makes PyTorch <u>code</u> run faster by just-in-time (JIT)-compiling PyTorch code into optimized kernels

How to Check AMX is Actually Used

Generate oneDNN Verbose logs using <u>guide</u> and <u>parser</u>

• To enable verbosity, set environment variables:

- export ONEDNN_VERBOSE=1
- export ONEDNN_VERBOSE_TIMESTAMP=1

• Set a Python breakpoint RIGHT AFTER one iteration of training/inference

How to Check if Your Hardware Supports AMX

• On bash terminal, enter the following command:

- cat /proc/cpuinfo
- Check the "flags" section for amx_bf16, amx_int8
- Alternatively, you can use:
 - lscpu | grep amx

• If you do not see them, consider upgrading to Linux kernel 5.17 and above

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse s se2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpu id aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 s se4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_ l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflus hopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_ mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdp id bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm uintr avx512_vp2intersect md_clear serialize tsxldtrk pconfig arch_ lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities

oneDNN Verbose Sample Output (CPU)

Sample oneDNN Verbose Output

onednn_verbose, info, oneDNN v2.6.0 (commit 52b5f107dd9cf10910aaa19cb47f3abf9b349815)

onednn_verbose,info,cpu.runtime:OpenMP,nthr:32

onednn_verbose, info, cpu.isa: Intel AVX-512 with Intel DL Boost

onednn_verbose,info,gpu,runtime:none

onednn_verbose,info,prim_template:timestamp,operation,engine,primitive,implementation,prop_kind,memory_descriptors,attributes,auxiliary,problem_desc,exec_time onednn_verbose,1678917979730.501953,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abcd:f0 dst_f32:p:blocked:Acdb16a:f0,attr-scratchpad:user ,,1x1x1x37,0.00292969 onednn_verbose,1678917979730.888916,exec,cpu,convolution,jit:avx512_core,forward_training,src_f32::blocked:abcd:f0 wei_f32:p:blocked:Acdb16a:f0 bia_undef::undef::f0 dst_f3 onednn_verbose,1678917979732.105957,exec,cpu,reorder,jit:uni,undef,src_f32:p:blocked:aBcd16b:f0 dst_f32::blocked:abcd:f0,attr-scratchpad:user ,,1x1x1x48000,0.0649414 onednn_verbose,167891798009.694092,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abc:f0 dst_f32::blocked:acb:f0,attr-scratchpad:user ,,1x60x305,0.00878906 onednn_verbose,1678917980011.387939,exec,cpu,convolution,brgconv:avx512_core,forward_training,src_f32::blocked:acb:f0 wei_f32::blocked:Acb32a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:acb:f0,attr-scratchpad:user ,,1x1024x301,0.278076 onednn_verbose,1678917980012.912109,exec,cpu,reorder,simple:any,undef,src_f32::blocked:Acb48a:f0 dst_f32::blocked:Acb64a:f0,attr-scratchpad:user ,,1024x1024x1,3.31201

• Note the ISA. For AMX, you should see the following:

- Intel AMX with bfloat16 and 8-bit integer support
- Check for AMX in the primitive implementation:

onednn_verbose,1673049613345.454102,exec,cpu,convolution,brgconv:avx512_core_amx_bf16,forward_training,src_bf16::blocked:acdb:f0 wei_ onednn_verbose,1673049613348.691895,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bf16,forward_training,src_bf16::blocked:acdb:f0 onednn_verbose,1673049613353.259033,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bf16,forward_training,src_bf16::blocked:acdb:f0 onednn_verbose,1673049613353.259033,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bf16,forward_training,src_bf16::blocked:acdb:f0 onednn_verbose,1673049613364.104980,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bf16,forward_training,src_bf16::blocked:acdb:f0

oneDNN Verbose Sample Output (GPU)

onednn verbose, info, oneDNN v3.2.0 (commit 67bc621a2da4aefc51f0a59b2af2398fald3e1c8)

onednn verbose, info, cpu, runtime: threadpool, nthr: 56

onednn_verbose,info,cpu,isa:Intel AVX-512 with float16, Intel DL Boost and bfloat16 support and Intel AMX with bfloat16 and 8-bit integer support onednn verbose,info,gpu,runtime:DPC++

onednn_verbose, info, gpu, engine, 0, backend: Level Zero, name: Intel (R) Data Center GPU Max 1100, driver_version: 1.3.26516, binary_kernels: enabled

onednn_verbose,info,experimental features are enabled

onednn_verbose, info, use batch_normalization stats one pass is enabled

onednn verbose, info, prim template: timestamp, operation, engine, primitive, implementation, prop kind, memory descriptors, attributes, auxiliary, problem desc, exec time onednn verbose,1692211521687.472900,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521710.104004,exec gpu, convolution, jit:ir, forward training, src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521724.636963,exec gpu, convolution, jit:ir, forward training, src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521738.939941,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521743.134033,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521750.906982,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521755.149902,exec gpu, convolution, jit:ir, forward training, src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521755.489990,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521755.853027,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521756.153076,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521756.447021,exec gpu, convolution, jit;ir, forward training,src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521765.226074,exec gpu,convolution,jit:ir,forward training,src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521779.264893,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521792.895996,exec gpu, convolution, jit:ir, forward training, src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521804.466064,exec gpu, convolution,jit:ir,forward training,src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0 onednn verbose,1692211521821.544922,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521835.277100,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521839.224121,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521839.625000,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521839.928955,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521840.221924,exec gpu, convolution, jit:ir, forward training, src bf16::blocked:acdb::f0 wei bf16::blocked:acdb::f0 bia bf16::blocked:a::f0 onednn verbose,1692211521840.562012,exec gpu, convolution, jit:ir, forward training, src bfl6::blocked:acdb::f0 wei bfl6::blocked:acdb::f0 bia bfl6::blocked:a::f0

Installation, Code Samples

Getting Started

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html

*Linux Kernel 5.17 required for AMX ** For TensorFlow, use v2.9.10 or newer for optimizations

Model Zoo for Intel® Architecture

Available on GitHub

https://github.com/intelAI/models/tree/master

Runs out-of-the-box for benchmarking

PyTorch use cases

- Image Recognition, Image Segmentation, Language Modeling/Translation, Object Detection, Recommendation, Textto-Speech, Shot Boundary Detection, Al Drug Design
- Supported on dGPU Flex and Max Series: training and inference on ResNet50v1.5, SSD-MobileNet, Yolo V4, Bert Large

Hugging Face: Fine-tuning Stable Diffusion Models on Intel CPUs

Image Recognition							
Model	Framework	Mode	Model Documentation	Benchmark/Test Dataset			
DenseNet169	TensorFlow	Inference	FP32	ImageNet 2012			
Inception V3	TensorFlow	Inference	Int8 FP32	ImageNet 2012			
Inception V4	TensorFlow	Inference	Int8 FP32	ImageNet 2012			
MobileNet V1*	TensorFlow	Inference	Int8 FP32 BFloat16	ImageNet 2012			
ResNet 101	TensorFlow	Inference	Int8 FP32	ImageNet 2012			
ResNet 50	TensorFlow	Inference	Int8 FP32	ImageNet 2012			
ResNet 50v1.5	TensorFlow	Inference	Int8 FP32 BFloat16 dGPU Int8	ImageNet 2012			
ResNet 50v1.5 Sapphire Rapids	TensorFlow	Inference	Int8 FP32 BFloat16	ImageNet 2012			
ResNet 50v1.5	TensorFlow	Training	FP32 BFloat16	ImageNet 2012			
Inception V3	TensorFlow Serving	Inference	FP32	Synthetic Data			
ResNet 50v1.5	TensorFlow Serving	Inference	FP32	Synthetic Data			
GoogLeNet	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
Inception v3	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
MNASNet 0.5	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
MNASNet 1.0	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNet 50	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNet 50	PyTorch	Training	FP32 BFloat16	ImageNet 2012			
ResNet 101	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNet 152	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNext 32x4d	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNext 32x16d	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
VGG-11	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
VGG-11 with batch normalization	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
Wide ResNet-50-2	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
Wide ResNet-101-2	PyTorch	Inference	FP32 BFloat16	ImageNet 2012			
ResNet 50 v1.5	PyTorch	Inference	dGPU Int8	ImageNet 2012			

Useful Links

- Intel[®] Extension for PyTorch <u>GitHub</u>
 - CPU: <u>Code</u>, <u>Documentation</u>, <u>Contributing</u>
 - GPU: <u>Code</u>, <u>Documentation</u>, <u>Contributing</u>
 - <u>Issues</u>
- oneAPI-samples GitHub
- Model Zoo for Intel[®] Architecture GitHub
- Sapphire Rapids Performance Tuning Guide
- 4th Gen Xeon Info
 - Intel[®] Xeon[®] Scalable Processors
 - 4th Gen Intel[®] Xeon[®] Scalable Processors
 - <u>4th Gen Intel[®] Xeon[®] Scalable Processor product brief</u>
 - Intel[®] Accelerator Engines
 - Software for 4th gen Intel Xeon Scalable and Intel[®] Xeon[®] Max Series

PyTorch/TensorFlow Benchmarking Configurations

4th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

- Deep Learning config:
 - Hardware configuration for Intel[®] Xeon[®] Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel[®] Advanced Matrix Extensions (Intel[®] AMX) int8 and bf16 with Intel[®] oneAPI Deep Neural Network Library (oneDNN) v2.7 optimized kernels integrated into Intel[®] Extension for PyTorch* v1.13, Intel[®] Extension for TensorFlow* v2.12, and Intel[®] Distribution of OpenVINO[™] toolkit v2022.3. Measurements may vary.
 - Wall power refers to platform power consumption.
 - If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.
- Transfer Learning config:
 - Hardware configuration for Intel[®] Xeon[®] Platinum 8480+ processor (formerly code named Sapphire Rapids): Use DLSA single node fine tuning, Vision Transfer Learning using single node, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDREL1.SYS.8612.P03.2208120629, operating system: Ubuntu 22.04.1 LT, using Intel[®] Advanced Matrix Extensions (Intel[®] AMX) int8 and bf16 with Intel[®] oneAPI Deep Neural Network Library (oneDNN) v2.6 optimized kernels integrated into Intel[®] Extension for PyTorch^{*} v1.12, and Intel[®] oneAPI Collective Communications Library v2021.5.2. Measurements and some software configurations may vary.

3rd Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

- Hardware configuration for Intel[®] Xeon[®] Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory, BIOS version SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel[®] oneAPI Deep Neural Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel[®] Extension for PyTorch* v1.12, Intel[®] Extension for TensorFlow* v2.10, and Intel[®] oneAPI Data Analytics Library (oneDAL) 2021.2 optimized kernels integrated into Intel[®] Extension for Scikitlearn* v2021.2. XGBoost v1.6.2, Intel[®] Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library (oneMKL) v2022.2, and Intel[®] Distribution of OpenVINO[™] toolkit v2022.3. Measurements may vary.
- If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

*All performance numbers are acquired running with 1 instance of 4 cores per socket

Notices and Disclaimers

For notices, disclaimers, and details about performance claims, visit <u>www.intel.com/PerformanceIndex</u> or scan the QR code:

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Intel® Summer Thank You!

