
Bringing AI Everywhere

oneAPI and Intel AI Products:
Optimizing Deep Learning
Performance on Intel Hardware
Platforms

Jing Xu

人工智能軟體科技顧問

March 27th, 2024

Overview
Bring AI Everywhere

SmallUnlock the AI Continuum Large

Novel Applications

Simplify AI Infrastructure

Bringing AI

Cloud Client
Scalable Systems & Solutions

Training &
Fine-Tuning

Inference &
Deployment Training InferenceFine-Tuning Deployment

AI Specific
General
Purpose

Accelerate the Workload Foundational Silicon & Software

AI Specific
General
Purpose

Accelerate the Workload Foundational Silicon & Software

SmallUnlock the AI Continuum Large

Novel Applications

Simplify AI Infrastructure

Bringing AI

Cloud Client
Scalable Systems & Solutions

Training &
Fine-Tuning

Inference &
Deployment InferenceFine-Tuning DeploymentTraining

▪ 95% linear scaling on MLPerf GPT-3 training benchmark

▪ Access large Intel Gaudi2 cluster on the Intel Developer Cloud

▪ Intel Gaudi2 accelerators with FP8 estimated to deliver price-performance
>H100

▪ ~2x price-performance to A100

▪ Software optimized for deep learning training and inference

▪ PyTorch, Hugging Face, Optimum Library optimizations

▪ The ONLY alternative to H100 for training LLMs based on MLPerf

▪ Trained GPT-3* model in 311 minutes on 384 Intel Gaud2 accelerators

Scalability

Price
Performance

Ease of
Use

Performance metrics based on MLPerf Training 3.0 benchmark. For configuration details, see the results published by MLPCommons..
GPT-3 model tested on MLPerf Training 3.0 consisted of representative 1% slice of the entire GPT-3 model Performance expectations for Gaudi2 with FP8 based on Intel internal evaluation June 2023
Price-performance claim based on comparable pricing of Intel Gaudi server and Nvidia A100 server and MLPerf Inference 3.1 Results. , Aug 2023. See Supermicro for server pricing. Price-performance claim based on significant pricing
differential between Intel Gaudi2 and Nvidia H100 server, MLPerf Training 3.0 Results, May 2023 and internal estimates of performance advancement with FP8. See Supermicro for server pricing. Results may vary

Intel® Gaudi® 2 AI Accelerator

Proven
Performance

https://mlcommons.org/en/training-normal-30/
https://mlcommons.org/en/inference-datacenter-31/
https://mlcommons.org/en/training-normal-30/

Code Transitioning

Performant AI Code with Minimal Changes

Across Generations & Architectures

Intel® Gaudi® 2
AI Accelerator

Intel® Gaudi® 3 AI
Accelerator

Next Gen GPU (Codenamed

Falcon Shores)

Powered by Transitioning Into a
Single Software Environment

Gaudi Software Suite Unified Programming Model

SmallUnlock the AI Continuum Large

Novel Applications

Simplify AI Infrastructure

Fine Tuning

Cloud Client
Scalable Systems & Solutions

Training &
Fine-Tuning

Inference &
Deployment Training InferenceDeploymentFine-Tuning

AI Specific
General
Purpose

Accelerate the Workload Foundational Silicon & Software

Fine Tuning

Fine-tune with
Intel® Gaudi® 2 Processor

When Optimal Speed is Desired

Fine-tune On Intel® Xeon®/Intel® Data
Center GPUs,

Exploiting Its Industry-leading
Ubiquity In the Data Center

4th Generation Intel® Xeon® Scalable Processor

1 See [A16, A17, A33] at intel.com/processorclaims: 4th Gen Intel Xeon Scalable processors. Results may vary.

2x PCI Express 5.0 Bandwidth

Compared to 3rd Gen Intel® Xeon® Scalable
Processors

3-10x speedup and
7.7x performance/watt1

for INT8/ BF16 models
with Built-In AI Acceleration

4th Gen Intel® Xeon® Scalable Processor with Intel®
Advanced Matrix Extensions acceleration vs. 3rd Gen
Intel® Xeon® Scalable Processors

Intel® AI software

300+ DL Models
50+ optimize ML and Graph Models
Optimizations up-streamed
Intel® AI Developer Tools

Up to 512 GB/Socket Protected
Memory Enclave—Intel® Security
Guard Extensions
Confidential AI supported in BigDL and OpenVINO™ toolkit

1.5x DDR5 Memory Bandwidth and
Capacity

Compared to 3rd Gen Intel® Xeon® Scalable
Processors

OneAPI AI Ecosystem

Use any popular DL, ML, and Data processing
library and framework, operating system, and
virtual machine manager

Intel® Advanced Matrix Extensions (Intel® AMX)
Acceleration Engine

What is Intel® AMX?
▪ Intel® AMX is a built-in accelerator that improves the

performance of deep learning training and inference on 4th
Gen Intel® Xeon® processors

▪ Advanced matrix multipliers are integrated into EVERY core

Business Value
▪ Help to lower customers’ TCO as it raises the bar for where

they can meet AI SLAs without the need for a discrete
accelerator

Software Support
▪ Works out-of-box on industry-standard frameworks, toolkits

and libraries such as PyTorch, TensorFlow, and OpenVINO

▪ vSphere 8 supports Intel AMX

PyTorch Training and Inference
Up to

10x higher

PyTorch for both real-time inference and training performance with built-
in Intel AMX (BF16) vs. the prior generation (FP32)

Visit here for workloads and configurations. Results may vary.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-matrix-extensions/ai-solution-brief.html

2.5x

NVIDIA
A100

T5 – 3B
Samples/s

BS = 16

2.4x

https://huggingface.co/blog/habana-gaudi-2-benchmark
https://huggingface.co/blog/bridgetower

R
el

at
iv

e
p

er
fo

rm
an

ce
 (

H
ig

h
er

 is
 b

et
te

r)

Visit https://habana.ai/habana-claims-validation for workloads and configurations. Results may vary.

1.4x

NVIDIA
H100

Bridge
Tower

Bridge
Tower

Hugging Face Evaluations Substantiate Intel® Gaudi® 2
Accelerator LLM Performance vs. Nvidia A100 and H100

https://huggingface.co/blog/habana-gaudi-2-benchmark
https://huggingface.co/blog/bridgetower
https://habana.ai/habana-claims-validation

Out-of-the Box Intel® Xeon® Fine Tuning

Intel Optimized Hugging Face Libraries & Tools

Optimized Models & Spaces

Transformers Diffusers Accelerate PEFT Optimum

Foundational Stack

Dolly LLAMA2 MPT LDM3D Whisper
100k’s
Mode

Fine Tuning Use Cases Fine Tuning at Scale Efficient Fine
Tuning

Performance
Optimization

+ Intel® Extension for PyTorch*
0

50

100

150

200

250

BioGPT 1.5 billion paramater GPT-J 6 billion parameter model

T
im

e-
to

-t
ra

in
 in

 m
in

u
te

s

Model

BioGPT 1.5 Billion Parameter and
GPT-J 6 Billion Parameter Model

Visit here for workloads and configurations. Results may vary.

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/performance.html#gs.6jtu8x

SmallUnlock the AI Continuum Large

Novel Applications

Simplify AI Infrastructure

Inference

Cloud Client
Scalable Systems & Solutions

Training &
Fine-Tuning

Inference &
Deployment Training InferenceFine-Tuning Deployment

AI Specific
General
Purpose

Accelerate the Workload Foundational Silicon & Software

NVIDIA
A100

2.84x

Stable Diffusion
Latency

BS =8; fp32

BLOOM 7B
BS=1, BF16

BLOOMz 176B
Inference

BS=1, BF16

1.42x

https://huggingface.co/blog/habana-gaudi-2-benchmark
https://huggingface.co/blog/habana-gaudi-2-bloom

Visit https://habana.ai/habana-claims-validation/for workloads and configuration regarding power consumption claims. Results may vary.

R
el

at
iv

e
p

er
fo

rm
an

ce
 (

H
ig

h
er

 is
 b

et
te

r)

2.89x

Energy Efficiency

Throughput-per-Watt on BLOOMZ 176B Inference is 1.79x

better than H100; 1.61x better than A100

https://huggingface.co/blog/habana-gaudi-2-benchmark
https://huggingface.co/blog/habana-gaudi-2-bloom
https://habana.ai/habana-claims-validation/

Inference on GPT-J

Intel Gaudi 2 Accelerator with FP8

• Near-parity* on GPT-J with H100

• Outperformed A100 by 2.4x (Server) and 2x
(Offline)

• Achieved 99.9% accuracy with FP8

Source: MLPerf Inference 3.1 Data Center Benchmark Results: https://mlcommons.org/en/inference-datacenter-31/
Intel® Gaudi® 2 AI accelerator on GPT-J Vs H100 with 1.09x (Server) and 1.28 (Offline). Results may vary

GPT-J On MLPerf Inference Benchmark

• Use any popular industry standard AI libraries

• Intel AI Platform validated with over 300 inference models

• One socket of 4th Gen Intel® Xeon® processors can run LLaMa2 chatbots in under 100ms 2nd token latency

0

10

20

30

40

50

60

70

80

90

100

32 Input Token 128 Input Token 1024 Input Token 2016 Input Token

To
ke

n
 la

te
n

cy
(m

s)

BF16 INT8

LLaMA2 7B : Intel Xeon 4th Gen 8480 1S P90 Latency
Batch Size 1, Beam Width 4, PyTorch* + Intel® Extension for PyTorch*

(Lower is better)

Visit here for workloads and configurations. Results may vary.

https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html

Inference Across Multiple Products

64

117

42

72
66

119

44

75
79

134

59

9493

153

74

114

7B 13B 7B 13B

Intel® 4th Gen Xeon® 8480 1 Socket Intel® Xeon® Max 9480 1 Socket

On 1 Socket Intel® Xeon®
Scalable Processor

Intel Xeon Scalable Processor

15.2

29.2

15.6

29.5

17.2

31.6

18.9

33.8

7B 13B

Intel® Data Center GPU Max 1550 single tile (1 card has 2 tiles)

On 1 Tile (out of 2 tiles per card) Intel® Data
Center GPU Max 1550

Intel Data Center GPU Max 1550

Llama 2 Next Token Latency (Lower is Better)

9

15.5

9.5

16.2

10.3

17.6

12.2

20.4

7B 13B

1x Gaudi2®

La
te

n
cy

 (
m

s)

Greedy Mode, Mixed Precision (bfloat16), BS =
1, 256 Output Tokens

Intel® Gaudi2 ®AI Accelerator

For configuration details see: https://habana.ai/habana-claims-validation/ and www.intel.com/PerformanceIndex

https://habana.ai/habana-claims-validation/
http://www.intel.com/PerformanceIndex

Software Optimizations
Optimization Methodologies

Core Python*
Intel®-optimized

Intel® oneAPI AI Analytics Toolkit

Accelerates end-to-end Machine Learning and
Data Analytics pipelines with frameworks and
libraries optimized for Intel® architectures

Who Uses It?

Data scientists, AI Researchers, Machine and Deep
Learning developers, AI application developers

Learn More: Intel®.com/oneAPI-AIKit

Machine learning

Data Analytics

Deep Learning

Intel® Optimization
for TensorFlow*

Intel® Optimization for PyTorch

Model Zoo
for Intel® Architecture

NumPy

Intel® Extension for Scikit-
Learn*

Intel® oneAPI AI Analytics Toolkit

Intel® optimizations for
XGBoost

Intel® Neural Compressor

Intel® Distribution of Modin*

OmniSci Backend

SciPy Numba Pandas DPPY

https://software.intel.com/en-us/oneapi/ai-kit

Intel® Optimization for PyTorch*

oneDNN oneCCL

Intel® Extension for PyTorch*

LIBRARIES

FRAMEWORKS

ECOSYSTEM torchvision TorchServe Hugging Face
PyTorch

Lightning
…

oneMKL

PyTorch

Overview

• Eager Mode (Default)
• Focus on operators
• For development and debugging

• Graph Mode (TorchScript)
• Fuse operators and use constant

folding to modify and merge the
model structure to reduce time loss
on invalid operations

• For deployment

• oneDNN is available.

• AMX automatically enabled with oneDNN.

• Dynamically linked in CPP executables.

Intel® Extension for PyTorch*

CPU: Code and Documentation
GPU: Code and Documentation

https://github.com/intel/intel-extension-for-pytorch/tree/cpu-master
https://intel.github.io/intel-extension-for-pytorch/cpu/latest/
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-master
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/

Major Optimization Methodologies

Operator Optimization

• Vectorization

• Parallelization

• Memory Layout

• Low Precision

Graph Optimization

• Operator fusion

• Constant folding

Runtime Extension

• Thread affinity

• Memory allocation

• Customized execution

• General performance optimization and Intel new feature enabling in PyTorch
upstream

• Additional performance boost and early adoption of aggressive optimizations
through Intel® Extension for PyTorch*

Vectorization

ISA Length Num of FP32

AVX 128 bits 4

AVX2 256 bits 8

AVX512 512 bits 16

a

b

a+b

+

=

https://www.Intel®.com/content/www/us/en/developer/articles/technical/improve-performance-with-vectorization.html

z = a + b

FP32 FP32 FP32

https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-with-vectorization.html

Parallelization

https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP

Memory Layout
• Used mainly in image workloads

• NCHW (PyTorch default)
• torch.contiguous_format

• NHWC
• torch.channels_last

• NHWC format yields higher
performance on Intel® hardware

• For GPU, move the input and model to
“xpu” before converting to channels last

• input = input.to(“xpu”)

• model = model.to(“xpu”)

0 1

2 3

Low-precision Optimization – BF16

S E E E E E E E E M

S E E E E E E E E M M M M M M M

FP32

BF16

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

8 bits 23 bits

7 bits

BF16 has the same range as FP32 but less precision due to 16 less mantissa bits. Running
with 16 bits can give significant performance speedup.

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

Training w/AMX BF16 on CPU

Inference w/AMX BF16 on CPU

Resnet50 BERT

Training with Intel® Extension for PyTorch* (GPU)

*The .to(“xpu”) is needed for GPU

Inference with Intel® Extension for PyTorch* (GPU)

Resnet50 BERT
*The .to(“xpu”) is needed for GPU

Low-precision Optimization – INT8

S E E E E E E E E M

S M M M M M M M

FP32

INT8

8 bits 23 bits

7 bits

▪ An approximation method

▪ The process of mapping values from a large set (e.g.,
continuous, FP64/FP32) to those with smaller set (e.g.,
countable, BF16, INT8)

What is Quantization?

▪ Significant performance increase with similar accuracy

Why Quantization?

▪ PyTorch quantization

▪ https://pytorch.org/docs/stable/quantization.html

How to Quantize?

Quantization Types

Quantization Mode Dataset Requirement Works Best For Accuracy Notes

Post Training
Quantization

Dynamic/Weight Only
Quantization

activation dynamically
quantized (fp16, int8) or not
quantized, weight statically
quantized (fp16, int8, in4)

None
LSTM, MLP, Embedding,
Transformer

good

Easy to use, close to static
quantization when performance is
compute or memory bound due to
weights

Static Quantization
activation and weights
statically quantized (int8)

calibration dataset CNN good

Provides best perf, may have big
impact on accuracy, good for
hardwares that only support int8
computation

Quantization Aware
Training

Dynamic Quantization
activation and weight are
fake quantized

fine-tuning dataset MLP, Embedding best Limited support for now

Static Quantization
activation and weight are
fake quantized

fine-tuning dataset CNN, MLP, Embedding best
Typically used when static
quantization leads to bad accuracy,
and used to close the accuracy gap

https://pytorch.org/docs/stable/quantization.html

https://pytorch.org/docs/stable/quantization.html

Operator Fusion

FP32 & BF16 Fusion Patterns

• Conv(2, 3)D + ReLU

• Conv(2, 3)D + SUM

• Conv(2, 3)D + SUM + ReLU

• Conv(2, 3)D + Sigmoid

• Conv(2, 3)D + Sigmoid + MUL

• Conv(2, 3)D + HardTanh

• Conv(2, 3)D + SiLU

• Conv(2, 3)D + ELU

• Linear + ReLU

• Linear + GELU

• …

Constant Folding

𝑦 = 𝑊 × 𝑥 + 𝑏

+

Binary Folding (ADD/SUB/MUL/DIV)

𝑦′ = 𝑦 + β

𝑦′ = 𝑊 × 𝑥 + 𝑏 + β

𝑦′ = 𝑊 × 𝑥 + 𝑏 + β

𝑦′ = 𝑊 × 𝑥 + 𝑏 × β

𝑦′ = 𝑦 × β

𝑦′ = 𝑊 × β × 𝑥 + 𝑏 × 𝛽

OR

𝑦′ = 𝑊′ × 𝑥 + 𝑏′

𝑊′ = 𝑊

𝑏′ = 𝑏 + β

𝑦′ = 𝑊′ × 𝑥 + 𝑏′

𝑊′ = 𝑊 × 𝛽

𝑏′ = 𝑏 × β

OR

𝑦′ = 𝑦 + β

𝑦′ = 𝑦 × β

OR

TorchScript and TorchDynamo

• Converts PyTorch model into a graph for faster execution

• torch.jit.trace() traces and records all operations in the computational graph; requires a
sample input

• torch.jit.script() parses the Python source code of the model and compiles the code
into a graph; sample input not required

• Makes PyTorch code run faster by just-in-time (JIT)-compiling PyTorch code into
optimized kernels

TorchScript

TorchDynamo – in BETA

How to Check AMX is Actually Used

• Generate oneDNN Verbose logs using guide and parser

• To enable verbosity, set environment variables:
• export ONEDNN_VERBOSE=1

• export ONEDNN_VERBOSE_TIMESTAMP=1

• Set a Python breakpoint RIGHT AFTER one iteration of training/inference

https://oneapi-src.github.io/oneDNN/dev_guide_verbose.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling

How to Check if Your Hardware Supports AMX

• On bash terminal, enter the following command:
• cat /proc/cpuinfo

• Check the “flags” section for amx_bf16, amx_int8

• Alternatively, you can use:
• lscpu | grep amx

• If you do not see them, consider upgrading to Linux kernel 5.17 and above

oneDNN Verbose Sample Output (CPU)

• Note the ISA. For AMX, you should see the following:
• Intel AMX with bfloat16 and 8-bit integer support

• Check for AMX in the primitive implementation:

oneDNN Verbose Sample Output (GPU)

Installation, Code Samples
Getting Started

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html
*Linux Kernel 5.17 required for AMX
** For TensorFlow, use v2.9.10 or newer for optimizations

https://pytorch.org/get-started/locally/

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html
https://pytorch.org/get-started/locally/

Model Zoo for Intel® Architecture
Available on GitHub
▪ https://github.com/intelAI/models/tree/master

Runs out-of-the-box for benchmarking

PyTorch use cases
▪ Image Recognition, Image Segmentation, Language

Modeling/Translation, Object Detection, Recommendation, Text-
to-Speech, Shot Boundary Detection, AI Drug Design

▪ Supported on dGPU Flex and Max Series: training and inference on
ResNet50v1.5, SSD-MobileNet, Yolo V4, Bert Large

▪ Hugging Face: Fine-tuning Stable Diffusion Models on Intel CPUs

https://github.com/intelAI/models/tree/master
https://huggingface.co/blog/stable-diffusion-finetuning-intel

Useful Links

• Intel® Extension for PyTorch GitHub
• CPU: Code, Documentation, Contributing
• GPU: Code, Documentation, Contributing
• Issues

• oneAPI-samples GitHub
• Model Zoo for Intel® Architecture GitHub
• Sapphire Rapids Performance Tuning Guide
• 4th Gen Xeon Info

• Intel® Xeon® Scalable Processors
• 4th Gen Intel® Xeon® Scalable Processors
• 4th Gen Intel® Xeon® Scalable Processor product brief
• Intel® Accelerator Engines
• Software for 4th gen Intel Xeon Scalable and Intel® Xeon® Max Series

https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch/tree/cpu-master
https://intel.github.io/intel-extension-for-pytorch/cpu/latest/
https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/contribution.html
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-master
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/contribution.html
https://github.com/intel/intel-extension-for-pytorch/issues
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/End-to-end-Workloads/LanguageIdentification
https://github.com/IntelAI/models
https://cdrdv2.intel.com/v1/dl/getContent/733546?explicitVersion=true
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors-product-brief.html
https://www.intel.com/content/www/us/en/now/xeon-accelerated/accelerators.html
https://www.intel.com/content/www/us/en/developer/platform/4gen-xeon-max-series-cpu.html

PyTorch/TensorFlow Benchmarking Configurations
4th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Deep Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version
EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural Network
Library (oneDNN) v2.7 optimized kernels integrated into Intel® Extension for PyTorch* v1.13, Intel® Extension for TensorFlow* v2.12, and Intel® Distribution of OpenVINO™ toolkit v2022.3.
Measurements may vary.

• Wall power refers to platform power consumption.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

• Transfer Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): Use DLSA single node fine tuning, Vision Transfer Learning using single node, 56
cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDREL1.SYS.8612.P03.2208120629, operating system: Ubuntu 22.04.1 LT, using Intel® Advanced Matrix Extensions (Intel®
AMX) int8 and bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6 optimized kernels integrated into Intel® Extension for PyTorch* v1.12, and Intel® oneAPI Collective
Communications Library v2021.5.2. Measurements and some software configurations may vary.

3rd Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Hardware configuration for Intel® Xeon® Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory, BIOS version
SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel®
Extension for PyTorch* v1.12, Intel® Extension for TensorFlow* v2.10, and Intel® oneAPI Data Analytics Library (oneDAL) 2021.2 optimized kernels integrated into Intel® Extension for Scikit-
learn* v2021.2. XGBoost v1.6.2, Intel® Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library (oneMKL) v2022.2, and Intel® Distribution of OpenVINO™ toolkit v2022.3.
Measurements may vary.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

*All performance numbers are acquired running with 1 instance of 4 cores per socket

Notices and Disclaimers

For notices, disclaimers, and details about performance claims, visit
www.intel.com/PerformanceIndex or scan the QR code:

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or

its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

Thank You!

